#D2176. Ehab's REAL Number Theory Problem
Ehab's REAL Number Theory Problem
Ehab's REAL Number Theory Problem
You are given an array a of length n that has a special condition: every element in this array has at most 7 divisors. Find the length of the shortest non-empty subsequence of this array product of whose elements is a perfect square.
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements.
Input
The first line contains an integer n (1 ≤ n ≤ 10^5) — the length of a.
The second line contains n integers a_1, a_2, …, a_{n} (1 ≤ a_i ≤ 10^6) — the elements of the array a.
Output
Output the length of the shortest non-empty subsequence of a product of whose elements is a perfect square. If there are several shortest subsequences, you can find any of them. If there's no such subsequence, print "-1".
Examples
Input
3 1 4 6
Output
1
Input
4 2 3 6 6
Output
2
Input
3 6 15 10
Output
3
Input
4 2 3 5 7
Output
-1
Note
In the first sample, you can choose a subsequence [1].
In the second sample, you can choose a subsequence [6, 6].
In the third sample, you can choose a subsequence [6, 15, 10].
In the fourth sample, there is no such subsequence.
inputFormat
Input
The first line contains an integer n (1 ≤ n ≤ 10^5) — the length of a.
The second line contains n integers a_1, a_2, …, a_{n} (1 ≤ a_i ≤ 10^6) — the elements of the array a.
outputFormat
Output
Output the length of the shortest non-empty subsequence of a product of whose elements is a perfect square. If there are several shortest subsequences, you can find any of them. If there's no such subsequence, print "-1".
Examples
Input
3 1 4 6
Output
1
Input
4 2 3 6 6
Output
2
Input
3 6 15 10
Output
3
Input
4 2 3 5 7
Output
-1
Note
In the first sample, you can choose a subsequence [1].
In the second sample, you can choose a subsequence [6, 6].
In the third sample, you can choose a subsequence [6, 15, 10].
In the fourth sample, there is no such subsequence.
样例
3
6 15 10
3