#D2140. Expected Value Again
Expected Value Again
Expected Value Again
You are given integers n, k. Let's consider the alphabet consisting of k different elements.
Let beauty f(s) of the string s be the number of indexes i, 1≤ i<|s|, for which prefix of s of length i equals to suffix of s of length i. For example, beauty of the string abacaba equals 2, as for i = 1, 3 prefix and suffix of length i are equal.
Consider all words of length n in the given alphabet. Find the expected value of f(s)^2 of a uniformly chosen at random word. We can show that it can be expressed as P/Q, where P and Q are coprime and Q isn't divided by 10^9 + 7. Output P⋅ Q^{-1} mod 10^9 + 7.
Input
The first and the only line contains two integers n, k (1≤ n ≤ 10^5, 1≤ k≤ 10^9) — the length of a string and the size of alphabet respectively.
Output
Output a single integer — P× Q^{-1} mod 10^9 + 7.
Examples
Input
2 3
Output
333333336
Input
1 5
Output
0
Input
100 1
Output
9801
Input
10 10
Output
412377396
Note
In the first example, there are 9 words of length 2 in alphabet of size 3 — aa, ab, ac, ba, bb, bc, ca, cb, cc. 3 of them have beauty 1 and 6 of them have beauty 0, so the average value is 1/3.
In the third example, there is only one such word, and it has beauty 99, so the average value is 99^2.
inputFormat
outputFormat
Output P⋅ Q^{-1} mod 10^9 + 7.
Input
The first and the only line contains two integers n, k (1≤ n ≤ 10^5, 1≤ k≤ 10^9) — the length of a string and the size of alphabet respectively.
Output
Output a single integer — P× Q^{-1} mod 10^9 + 7.
Examples
Input
2 3
Output
333333336
Input
1 5
Output
0
Input
100 1
Output
9801
Input
10 10
Output
412377396
Note
In the first example, there are 9 words of length 2 in alphabet of size 3 — aa, ab, ac, ba, bb, bc, ca, cb, cc. 3 of them have beauty 1 and 6 of them have beauty 0, so the average value is 1/3.
In the third example, there is only one such word, and it has beauty 99, so the average value is 99^2.
样例
2 3
333333336
</p>