#D2033. Antenna Coverage
Antenna Coverage
Antenna Coverage
The mayor of the Central Town wants to modernize Central Street, represented in this problem by the (Ox) axis.
On this street, there are n antennas, numbered from 1 to n. The i-th antenna lies on the position x_i and has an initial scope of s_i: it covers all integer positions inside the interval [x_i - s_i; x_i + s_i].
It is possible to increment the scope of any antenna by 1, this operation costs 1 coin. We can do this operation as much as we want (multiple times on the same antenna if we want).
To modernize the street, we need to make all integer positions from 1 to m inclusive covered by at least one antenna. Note that it is authorized to cover positions outside [1; m], even if it's not required.
What is the minimum amount of coins needed to achieve this modernization?
Input
The first line contains two integers n and m (1 ≤ n ≤ 80 and n ≤ m ≤ 100\ 000).
The i-th of the next n lines contains two integers x_i and s_i (1 ≤ x_i ≤ m and 0 ≤ s_i ≤ m).
On each position, there is at most one antenna (values x_i are pairwise distinct).
Output
You have to output a single integer: the minimum amount of coins required to make all integer positions from 1 to m inclusive covered by at least one antenna.
Examples
Input
3 595 43 2 300 4 554 10
Output
281
Input
1 1 1 1
Output
0
Input
2 50 20 0 3 1
Output
30
Input
5 240 13 0 50 25 60 5 155 70 165 70
Output
26
Note
In the first example, here is a possible strategy:
- Increase the scope of the first antenna by 40, so that it becomes 2 + 40 = 42. This antenna will cover interval [43 - 42; 43 + 42] which is [1; 85]
- Increase the scope of the second antenna by 210, so that it becomes 4 + 210 = 214. This antenna will cover interval [300 - 214; 300 + 214], which is [86; 514]
- Increase the scope of the third antenna by 31, so that it becomes 10 + 31 = 41. This antenna will cover interval [554 - 41; 554 + 41], which is [513; 595]
Total cost is 40 + 210 + 31 = 281. We can prove that it's the minimum cost required to make all positions from 1 to 595 covered by at least one antenna.
Note that positions 513 and 514 are in this solution covered by two different antennas, but it's not important.
—
In the second example, the first antenna already covers an interval [0; 2] so we have nothing to do.
Note that the only position that we needed to cover was position 1; positions 0 and 2 are covered, but it's not important.
inputFormat
Input
The first line contains two integers n and m (1 ≤ n ≤ 80 and n ≤ m ≤ 100\ 000).
The i-th of the next n lines contains two integers x_i and s_i (1 ≤ x_i ≤ m and 0 ≤ s_i ≤ m).
On each position, there is at most one antenna (values x_i are pairwise distinct).
outputFormat
Output
You have to output a single integer: the minimum amount of coins required to make all integer positions from 1 to m inclusive covered by at least one antenna.
Examples
Input
3 595 43 2 300 4 554 10
Output
281
Input
1 1 1 1
Output
0
Input
2 50 20 0 3 1
Output
30
Input
5 240 13 0 50 25 60 5 155 70 165 70
Output
26
Note
In the first example, here is a possible strategy:
- Increase the scope of the first antenna by 40, so that it becomes 2 + 40 = 42. This antenna will cover interval [43 - 42; 43 + 42] which is [1; 85]
- Increase the scope of the second antenna by 210, so that it becomes 4 + 210 = 214. This antenna will cover interval [300 - 214; 300 + 214], which is [86; 514]
- Increase the scope of the third antenna by 31, so that it becomes 10 + 31 = 41. This antenna will cover interval [554 - 41; 554 + 41], which is [513; 595]
Total cost is 40 + 210 + 31 = 281. We can prove that it's the minimum cost required to make all positions from 1 to 595 covered by at least one antenna.
Note that positions 513 and 514 are in this solution covered by two different antennas, but it's not important.
—
In the second example, the first antenna already covers an interval [0; 2] so we have nothing to do.
Note that the only position that we needed to cover was position 1; positions 0 and 2 are covered, but it's not important.
样例
1 1
1 1
0