#D1625. I hate Matrix Construction
I hate Matrix Construction
I hate Matrix Construction
Given are an integer N and arrays S, T, U, and V, each of length N. Construct an N×N matrix a that satisfy the following conditions:
- a_{i,j} is an integer.
- 0 \leq a_{i,j} \lt 2^{64}.
- If S_{i} = 0, the bitwise AND of the elements in the i-th row is U_{i}.
- If S_{i} = 1, the bitwise OR of the elements in the i-th row is U_{i}.
- If T_{i} = 0, the bitwise AND of the elements in the i-th column is V_{i}.
- If T_{i} = 1, the bitwise OR of the elements in the i-th column is V_{i}.
However, there may be cases where no matrix satisfies the conditions.
Constraints
- All values in input are integers.
- 1 \leq N \leq 500
- 0 \leq S_{i} \leq 1
- 0 \leq T_{i} \leq 1
- 0 \leq U_{i} \lt 2^{64}
- 0 \leq V_{i} \lt 2^{64}
Input
Input is given from Standard Input in the following format:
N S_{1} S_{2} ... S_{N} T_{1} T_{2} ... T_{N} U_{1} U_{2} ... U_{N} V_{1} V_{2} ... V_{N}
Output
If there exists a matrix that satisfies the conditions, print one such matrix in the following format:
a_{1,1} ... a_{1,N} : a_{N,1} ... a_{N,N}
Note that any matrix satisfying the conditions is accepted.
If no matrix satisfies the conditions, print -1.
Examples
Input
2 0 1 1 0 1 1 1 0
Output
1 1 1 0
Input
2 1 1 1 0 15 15 15 11
Output
15 11 15 11
inputFormat
input are integers.
- 1 \leq N \leq 500
- 0 \leq S_{i} \leq 1
- 0 \leq T_{i} \leq 1
- 0 \leq U_{i} \lt 2^{64}
- 0 \leq V_{i} \lt 2^{64}
Input
Input is given from Standard Input in the following format:
N S_{1} S_{2} ... S_{N} T_{1} T_{2} ... T_{N} U_{1} U_{2} ... U_{N} V_{1} V_{2} ... V_{N}
outputFormat
Output
If there exists a matrix that satisfies the conditions, print one such matrix in the following format:
a_{1,1} ... a_{1,N} : a_{N,1} ... a_{N,N}
Note that any matrix satisfying the conditions is accepted.
If no matrix satisfies the conditions, print -1.
Examples
Input
2 0 1 1 0 1 1 1 0
Output
1 1 1 0
Input
2 1 1 1 0 15 15 15 11
Output
15 11 15 11
样例
2
1 1
1 0
15 15
15 11
15 11
15 11
</p>