#D12930. Select Half
Select Half
Select Half
Given is an integer sequence A_1, ..., A_N of length N.
We will choose exactly \left\lfloor \frac{N}{2} \right\rfloor elements from this sequence so that no two adjacent elements are chosen.
Find the maximum possible sum of the chosen elements.
Here \lfloor x \rfloor denotes the greatest integer not greater than x.
Constraints
- 2 \leq N \leq 2\times 10^5
- |A_i|\leq 10^9
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N A_1 ... A_N
Output
Print the maximum possible sum of the chosen elements.
Examples
Input
6 1 2 3 4 5 6
Output
12
Input
5 -1000 -100 -10 0 10
Output
0
Input
10 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
Output
5000000000
Input
27 18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -49
Output
295
inputFormat
input are integers.
Input
Input is given from Standard Input in the following format:
N A_1 ... A_N
outputFormat
Output
Print the maximum possible sum of the chosen elements.
Examples
Input
6 1 2 3 4 5 6
Output
12
Input
5 -1000 -100 -10 0 10
Output
0
Input
10 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000
Output
5000000000
Input
27 18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -49
Output
295
样例
27
18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -49
295