#D12797. Coincidence

    ID: 10640 Type: Default 2000ms 1073MiB

Coincidence

Coincidence

Given are integers L and R. Find the number, modulo 10^9 + 7, of pairs of integers (x, y) (L \leq x \leq y \leq R) such that the remainder when y is divided by x is equal to y \mbox{ XOR } x.

What is \mbox{ XOR }?

The XOR of integers A and B, A \mbox{ XOR } B, is defined as follows:

  • When A \mbox{ XOR } B is written in base two, the digit in the 2^k's place (k \geq 0) is 1 if either A or B, but not both, has 1 in the 2^k's place, and 0 otherwise.

For example, 3 \mbox{ XOR } 5 = 6. (In base two: 011 \mbox{ XOR } 101 = 110.)

Constraints

  • 1 \leq L \leq R \leq 10^{18}

Input

Input is given from Standard Input in the following format:

L R

Output

Print the number of pairs of integers (x, y) (L \leq x \leq y \leq R) satisfying the condition, modulo 10^9 + 7.

Examples

Input

2 3

Output

3

Input

10 100

Output

604

Input

1 1000000000000000000

Output

68038601

inputFormat

Input

Input is given from Standard Input in the following format:

L R

outputFormat

Output

Print the number of pairs of integers (x, y) (L \leq x \leq y \leq R) satisfying the condition, modulo 10^9 + 7.

Examples

Input

2 3

Output

3

Input

10 100

Output

604

Input

1 1000000000000000000

Output

68038601

样例

2 3
3