#D1264. Grafting

    ID: 1051 Type: Default 5000ms 1073MiB

Grafting

Grafting

Snuke has found two trees A and B, each with N vertices numbered 1 to N. The i-th edge of A connects Vertex a_i and b_i, and the j-th edge of B connects Vertex c_j and d_j. Also, all vertices of A are initially painted white.

Snuke would like to perform the following operation on A zero or more times so that A coincides with B:

  • Choose a leaf vertex that is painted white. (Let this vertex be v.)
  • Remove the edge incident to v, and add a new edge that connects v to another vertex.
  • Paint v black.

Determine if A can be made to coincide with B, ignoring color. If the answer is yes, find the minimum number of operations required.

You are given T cases of this kind. Find the answer for each of them.

Constraints

  • 1 \leq T \leq 20
  • 3 \leq N \leq 50
  • 1 \leq a_i,b_i,c_i,d_i \leq N
  • All given graphs are trees.

Input

Input is given from Standard Input in the following format:

T case_1 : case_{T}

Each case is given in the following format:

N a_1 b_1 : a_{N-1} b_{N-1} c_1 d_1 : c_{N-1} d_{N-1}

Output

For each case, if A can be made to coincide with B ignoring color, print the minimum number of operations required, and print -1 if it cannot.

Examples

Input

2 3 1 2 2 3 1 3 3 2 6 1 2 2 3 3 4 4 5 5 6 1 2 2 4 4 3 3 5 5 6

Output

1 -1

Input

3 8 2 7 4 8 8 6 7 1 7 3 5 7 7 8 4 2 5 2 1 2 8 1 3 2 2 6 2 7 4 1 2 2 3 3 4 3 4 2 1 3 2 9 5 3 4 3 9 3 6 8 2 3 1 3 3 8 1 7 4 1 2 8 9 6 3 6 3 5 1 8 9 7 1 6

Output

6 0 7

inputFormat

Input

Input is given from Standard Input in the following format:

T case_1 : case_{T}

Each case is given in the following format:

N a_1 b_1 : a_{N-1} b_{N-1} c_1 d_1 : c_{N-1} d_{N-1}

outputFormat

Output

For each case, if A can be made to coincide with B ignoring color, print the minimum number of operations required, and print -1 if it cannot.

Examples

Input

2 3 1 2 2 3 1 3 3 2 6 1 2 2 3 3 4 4 5 5 6 1 2 2 4 4 3 3 5 5 6

Output

1 -1

Input

3 8 2 7 4 8 8 6 7 1 7 3 5 7 7 8 4 2 5 2 1 2 8 1 3 2 2 6 2 7 4 1 2 2 3 3 4 3 4 2 1 3 2 9 5 3 4 3 9 3 6 8 2 3 1 3 3 8 1 7 4 1 2 8 9 6 3 6 3 5 1 8 9 7 1 6

Output

6 0 7

样例

3
8
2 7
4 8
8 6
7 1
7 3
5 7
7 8
4 2
5 2
1 2
8 1
3 2
2 6
2 7
4
1 2
2 3
3 4
3 4
2 1
3 2
9
5 3
4 3
9 3
6 8
2 3
1 3
3 8
1 7
4 1
2 8
9 6
3 6
3 5
1 8
9 7
1 6
6

0 7

</p>