#D12623. Ehab and the Big Finale
Ehab and the Big Finale
Ehab and the Big Finale
This is an interactive problem.
You're given a tree consisting of n nodes, rooted at node 1. A tree is a connected graph with no cycles.
We chose a hidden node x. In order to find this node, you can ask queries of two types:
- d u (1 ≤ u ≤ n). We will answer with the distance between nodes u and x. The distance between two nodes is the number of edges in the shortest path between them.
- s u (1 ≤ u ≤ n). We will answer with the second node on the path from u to x. However, there's a plot twist. If u is not an ancestor of x, you'll receive "Wrong answer" verdict!
Node a is called an ancestor of node b if a ≠ b and the shortest path from node 1 to node b passes through node a. Note that in this problem a node is not an ancestor of itself.
Can you find x in no more than 36 queries? The hidden node is fixed in each test beforehand and does not depend on your queries.
Input
The first line contains the integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of nodes in the tree.
Each of the next n-1 lines contains two space-separated integers u and v (1 ≤ u,v ≤ n) that mean there's an edge between nodes u and v. It's guaranteed that the given graph is a tree.
Output
To print the answer, print "! x" (without quotes).
Interaction
To ask a question, print it in one of the formats above:
- d u (1 ≤ u ≤ n), or
- s u (1 ≤ u ≤ n).
After each question, you should read the answer: either the distance or the second vertex on the path, as mentioned in the legend.
If we answer with -1 instead of a valid answer, that means you exceeded the number of queries, made an invalid query, or violated the condition in the second type of queries. Exit immediately after receiving -1 and you will see Wrong answer verdict. Otherwise, you can get an arbitrary verdict because your solution will continue to read from a closed stream.
After printing a query, do not forget to output end of line and flush the output. Otherwise, you will get Idleness limit exceeded. To do this, use:
- fflush(stdout) or cout.flush() in C++;
- System.out.flush() in Java;
- flush(output) in Pascal;
- stdout.flush() in Python;
- See the documentation for other languages.
Hacks:
The first line should contain two integers n and x (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ x ≤ n).
Each of the next n-1 lines should contain two integers u and v (1 ≤ u,v ≤ n) that mean there is an edge between nodes u and v. The edges must form a tree.
Example
Input
5 1 2 1 3 3 4 3 5 3 5
Output
d 2 s 3 ! 5
Note
In the first example, the hidden node is node 5.
We first ask about the distance between node x and node 2. The answer is 3, so node x is either 4 or 5. We then ask about the second node in the path from node 3 to node x. Note here that node 3 is an ancestor of node 5. We receive node 5 as the answer. Finally, we report that the hidden node is node 5.
inputFormat
Input
The first line contains the integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of nodes in the tree.
Each of the next n-1 lines contains two space-separated integers u and v (1 ≤ u,v ≤ n) that mean there's an edge between nodes u and v. It's guaranteed that the given graph is a tree.
outputFormat
Output
To print the answer, print "! x" (without quotes).
Interaction
To ask a question, print it in one of the formats above:
- d u (1 ≤ u ≤ n), or
- s u (1 ≤ u ≤ n).
After each question, you should read the answer: either the distance or the second vertex on the path, as mentioned in the legend.
If we answer with -1 instead of a valid answer, that means you exceeded the number of queries, made an invalid query, or violated the condition in the second type of queries. Exit immediately after receiving -1 and you will see Wrong answer verdict. Otherwise, you can get an arbitrary verdict because your solution will continue to read from a closed stream.
After printing a query, do not forget to output end of line and flush the output. Otherwise, you will get Idleness limit exceeded. To do this, use:
- fflush(stdout) or cout.flush() in C++;
- System.out.flush() in Java;
- flush(output) in Pascal;
- stdout.flush() in Python;
- See the documentation for other languages.
Hacks:
The first line should contain two integers n and x (2 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ x ≤ n).
Each of the next n-1 lines should contain two integers u and v (1 ≤ u,v ≤ n) that mean there is an edge between nodes u and v. The edges must form a tree.
Example
Input
5 1 2 1 3 3 4 3 5 3 5
Output
d 2 s 3 ! 5
Note
In the first example, the hidden node is node 5.
We first ask about the distance between node x and node 2. The answer is 3, so node x is either 4 or 5. We then ask about the second node in the path from node 3 to node x. Note here that node 3 is an ancestor of node 5. We receive node 5 as the answer. Finally, we report that the hidden node is node 5.
样例
5
1 2
1 3
3 4
3 5
3
5
d 1
d 3
d 1
! 1
</p>