#D12484. Algoland and Berland
Algoland and Berland
Algoland and Berland
Once upon a time Algoland and Berland were a single country, but those times are long gone. Now they are two different countries, but their cities are scattered on a common territory.
All cities are represented as points on the Cartesian plane. Algoland consists of a cities numbered from 1 to a. The coordinates of the i-th Algoland city are a pair of integer numbers (xa_i, ya_i). Similarly, Berland consists of b cities numbered from 1 to b. The coordinates of the j-th Berland city are a pair of integer numbers (xb_j, yb_j). No three of the a+b mentioned cities lie on a single straight line.
As the first step to unite the countries, Berland decided to build several bidirectional freeways. Each freeway is going to be a line segment that starts in a Berland city and ends in an Algoland city. Freeways can't intersect with each other at any point except freeway's start or end. Moreover, the freeways have to connect all a+b cities. Here, connectivity means that one can get from any of the specified a+b cities to any other of the a+b cities using freeways. Note that all freeways are bidirectional, which means that one can drive on each of them in both directions.
Mayor of each of the b Berland cities allocated a budget to build the freeways that start from this city. Thus, you are given the numbers r_1, r_2, ..., r_b, where r_j is the number of freeways that are going to start in the j-th Berland city. The total allocated budget is very tight and only covers building the minimal necessary set of freeways. In other words, r_1+r_2+...+r_b=a+b-1.
Help Berland to build the freeways so that:
- each freeway is a line segment connecting a Berland city and an Algoland city,
- no freeways intersect with each other except for the freeway's start or end,
- freeways connect all a+b cities (all freeways are bidirectional),
- there are r_j freeways that start from the j-th Berland city.
Input
Input contains one or several test cases. The first input line contains a single integer number t (1 ≤ t ≤ 3000) — number of test cases. Then, t test cases follow. Solve test cases separately, test cases are completely independent and do not affect each other.
Each test case starts with a line containing space-separated integers a and b (1 ≤ a, b ≤ 3000) — numbers of Algoland cities and number of Berland cities correspondingly.
The next line contains b space-separated integers r_1, r_2, ..., r_b (1 ≤ r_b ≤ a) where r_j is the number of freeways, that should start in the j-th Berland city. It is guaranteed that r_1+r_2+...+r_b=a+b-1.
The next a lines contain coordinates of the Algoland cities — pairs of space-separated integers xa_i, ya_i (-10000 ≤ xa_i, ya_i ≤ 10000). The next b lines contain coordinates of the Berland cities — pairs of space-separated integers xb_i, yb_i (-10000 ≤ xb_i, yb_i ≤ 10000). All cities are located at distinct points, no three of the a+b cities lie on a single straight line.
Sum of values a across all test cases doesn't exceed 3000. Sum of values b across all test cases doesn't exceed 3000.
Output
For each of the t test cases, first print "YES" if there is an answer or "NO" otherwise.
If there is an answer, print the freeway building plan in the next a+b-1 lines. Each line of the plan should contain two space-separated integers j and i which means that a freeway from the j-th Berland city to the i-th Algoland city should be built. If there are multiple solutions, print any.
Example
Input
2 2 3 1 1 2 0 0 1 1 1 2 3 2 4 0 1 1 1 0 0 0 1
Output
YES 2 2 1 2 3 2 3 1 YES 1 1
inputFormat
Input
Input contains one or several test cases. The first input line contains a single integer number t (1 ≤ t ≤ 3000) — number of test cases. Then, t test cases follow. Solve test cases separately, test cases are completely independent and do not affect each other.
Each test case starts with a line containing space-separated integers a and b (1 ≤ a, b ≤ 3000) — numbers of Algoland cities and number of Berland cities correspondingly.
The next line contains b space-separated integers r_1, r_2, ..., r_b (1 ≤ r_b ≤ a) where r_j is the number of freeways, that should start in the j-th Berland city. It is guaranteed that r_1+r_2+...+r_b=a+b-1.
The next a lines contain coordinates of the Algoland cities — pairs of space-separated integers xa_i, ya_i (-10000 ≤ xa_i, ya_i ≤ 10000). The next b lines contain coordinates of the Berland cities — pairs of space-separated integers xb_i, yb_i (-10000 ≤ xb_i, yb_i ≤ 10000). All cities are located at distinct points, no three of the a+b cities lie on a single straight line.
Sum of values a across all test cases doesn't exceed 3000. Sum of values b across all test cases doesn't exceed 3000.
outputFormat
Output
For each of the t test cases, first print "YES" if there is an answer or "NO" otherwise.
If there is an answer, print the freeway building plan in the next a+b-1 lines. Each line of the plan should contain two space-separated integers j and i which means that a freeway from the j-th Berland city to the i-th Algoland city should be built. If there are multiple solutions, print any.
Example
Input
2 2 3 1 1 2 0 0 1 1 1 2 3 2 4 0 1 1 1 0 0 0 1
Output
YES 2 2 1 2 3 2 3 1 YES 1 1
样例
2
2 3
1 1 2
0 0
1 1
1 2
3 2
4 0
1 1
1
0 0
0 1
YES
3 1
1 2
2 2
3 2
YES
1 1
</p>