#D12438. Nastya Is Transposing Matrices
Nastya Is Transposing Matrices
Nastya Is Transposing Matrices
Nastya came to her informatics lesson, and her teacher who is, by the way, a little bit famous here gave her the following task.
Two matrices A and B are given, each of them has size n × m. Nastya can perform the following operation to matrix A unlimited number of times:
- take any square square submatrix of A and transpose it (i.e. the element of the submatrix which was in the i-th row and j-th column of the submatrix will be in the j-th row and i-th column after transposing, and the transposed submatrix itself will keep its place in the matrix A).
Nastya's task is to check whether it is possible to transform the matrix A to the matrix B.
Example of the operation
As it may require a lot of operations, you are asked to answer this question for Nastya.
A square submatrix of matrix M is a matrix which consist of all elements which comes from one of the rows with indeces x, x+1, ..., x+k-1 of matrix M and comes from one of the columns with indeces y, y+1, ..., y+k-1 of matrix M. k is the size of square submatrix. In other words, square submatrix is the set of elements of source matrix which form a solid square (i.e. without holes).
Input
The first line contains two integers n and m separated by space (1 ≤ n, m ≤ 500) — the numbers of rows and columns in A and B respectively.
Each of the next n lines contains m integers, the j-th number in the i-th of these lines denotes the j-th element of the i-th row of the matrix A (1 ≤ A_{ij} ≤ 10^{9}).
Each of the next n lines contains m integers, the j-th number in the i-th of these lines denotes the j-th element of the i-th row of the matrix B (1 ≤ B_{ij} ≤ 10^{9}).
Output
Print "YES" (without quotes) if it is possible to transform A to B and "NO" (without quotes) otherwise.
You can print each letter in any case (upper or lower).
Examples
Input
2 2 1 1 6 1 1 6 1 1
Output
YES
Input
2 2 4 4 4 5 5 4 4 4
Output
NO
Input
3 3 1 2 3 4 5 6 7 8 9 1 4 7 2 5 6 3 8 9
Output
YES
Note
Consider the third example. The matrix A initially looks as follows.
$$$ \begin{bmatrix} 1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9 \end{bmatrix} $ $$Then we choose the whole matrix as transposed submatrix and it becomes
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 8\\\ 3 & 6 & 9 \end{bmatrix} $ $$Then we transpose the submatrix with corners in cells (2, 2) and (3, 3).
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 8\\\ 3 & 6 & 9 \end{bmatrix} $ $$So matrix becomes
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 6\\\ 3 & 8 & 9 \end{bmatrix} $ $$and it is B.
inputFormat
Input
The first line contains two integers n and m separated by space (1 ≤ n, m ≤ 500) — the numbers of rows and columns in A and B respectively.
Each of the next n lines contains m integers, the j-th number in the i-th of these lines denotes the j-th element of the i-th row of the matrix A (1 ≤ A_{ij} ≤ 10^{9}).
Each of the next n lines contains m integers, the j-th number in the i-th of these lines denotes the j-th element of the i-th row of the matrix B (1 ≤ B_{ij} ≤ 10^{9}).
outputFormat
Output
Print "YES" (without quotes) if it is possible to transform A to B and "NO" (without quotes) otherwise.
You can print each letter in any case (upper or lower).
Examples
Input
2 2 1 1 6 1 1 6 1 1
Output
YES
Input
2 2 4 4 4 5 5 4 4 4
Output
NO
Input
3 3 1 2 3 4 5 6 7 8 9 1 4 7 2 5 6 3 8 9
Output
YES
Note
Consider the third example. The matrix A initially looks as follows.
$$$ \begin{bmatrix} 1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9 \end{bmatrix} $ $$Then we choose the whole matrix as transposed submatrix and it becomes
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 8\\\ 3 & 6 & 9 \end{bmatrix} $ $$Then we transpose the submatrix with corners in cells (2, 2) and (3, 3).
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 8\\\ 3 & 6 & 9 \end{bmatrix} $ $$So matrix becomes
$$$ \begin{bmatrix} 1 & 4 & 7\\\ 2 & 5 & 6\\\ 3 & 8 & 9 \end{bmatrix} $ $$and it is B.
样例
3 3
1 2 3
4 5 6
7 8 9
1 4 7
2 5 6
3 8 9
YES
</p>