#D12431. Xor Sum 4
Xor Sum 4
Xor Sum 4
We have N integers. The i-th integer is A_i.
Find \sum_{i=1}^{N-1}\sum_{j=i+1}^{N} (A_i \mbox{ XOR } A_j), modulo (10^9+7).
What is \mbox{ XOR }?
The XOR of integers A and B, A \mbox{ XOR } B, is defined as follows:
- When A \mbox{ XOR } B is written in base two, the digit in the 2^k's place (k \geq 0) is 1 if either A or B, but not both, has 1 in the 2^k's place, and 0 otherwise.
For example, 3 \mbox{ XOR } 5 = 6. (In base two: 011 \mbox{ XOR } 101 = 110.)
Constraints
- 2 \leq N \leq 3 \times 10^5
- 0 \leq A_i < 2^{60}
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N A_1 A_2 ... A_N
Output
Print the value \sum_{i=1}^{N-1}\sum_{j=i+1}^{N} (A_i \mbox{ XOR } A_j), modulo (10^9+7).
Examples
Input
3 1 2 3
Output
6
Input
10 3 1 4 1 5 9 2 6 5 3
Output
237
Input
10 3 14 159 2653 58979 323846 2643383 27950288 419716939 9375105820
Output
103715602
inputFormat
input are integers.
Input
Input is given from Standard Input in the following format:
N A_1 A_2 ... A_N
outputFormat
Output
Print the value \sum_{i=1}^{N-1}\sum_{j=i+1}^{N} (A_i \mbox{ XOR } A_j), modulo (10^9+7).
Examples
Input
3 1 2 3
Output
6
Input
10 3 1 4 1 5 9 2 6 5 3
Output
237
Input
10 3 14 159 2653 58979 323846 2643383 27950288 419716939 9375105820
Output
103715602
样例
3
1 2 3
6