#D12407. Koala and Lights
Koala and Lights
Koala and Lights
It is a holiday season, and Koala is decorating his house with cool lights! He owns n lights, all of which flash periodically.
After taking a quick glance at them, Koala realizes that each of his lights can be described with two parameters a_i and b_i. Light with parameters a_i and b_i will toggle (on to off, or off to on) every a_i seconds starting from the b_i-th second. In other words, it will toggle at the moments b_i, b_i + a_i, b_i + 2 ⋅ a_i and so on.
You know for each light whether it's initially on or off and its corresponding parameters a_i and b_i. Koala is wondering what is the maximum number of lights that will ever be on at the same time. So you need to find that out.
Here is a graphic for the first example.
Input
The first line contains a single integer n (1 ≤ n ≤ 100), the number of lights.
The next line contains a string s of n characters. The i-th character is "1", if the i-th lamp is initially on. Otherwise, i-th character is "0".
The i-th of the following n lines contains two integers a_i and b_i (1 ≤ a_i, b_i ≤ 5) — the parameters of the i-th light.
Output
Print a single integer — the maximum number of lights that will ever be on at the same time.
Examples
Input
3 101 3 3 3 2 3 1
Output
2
Input
4 1111 3 4 5 2 3 1 3 2
Output
4
Input
6 011100 5 3 5 5 2 4 3 5 4 2 1 5
Output
6
Note
For first example, the lamps' states are shown in the picture above. The largest number of simultaneously on lamps is 2 (e.g. at the moment 2).
In the second example, all lights are initially on. So the answer is 4.
inputFormat
Input
The first line contains a single integer n (1 ≤ n ≤ 100), the number of lights.
The next line contains a string s of n characters. The i-th character is "1", if the i-th lamp is initially on. Otherwise, i-th character is "0".
The i-th of the following n lines contains two integers a_i and b_i (1 ≤ a_i, b_i ≤ 5) — the parameters of the i-th light.
outputFormat
Output
Print a single integer — the maximum number of lights that will ever be on at the same time.
Examples
Input
3 101 3 3 3 2 3 1
Output
2
Input
4 1111 3 4 5 2 3 1 3 2
Output
4
Input
6 011100 5 3 5 5 2 4 3 5 4 2 1 5
Output
6
Note
For first example, the lamps' states are shown in the picture above. The largest number of simultaneously on lamps is 2 (e.g. at the moment 2).
In the second example, all lights are initially on. So the answer is 4.
样例
4
1111
3 4
5 2
3 1
3 2
4
</p>