#D1208. Frog 2
Frog 2
Frog 2
There are N stones, numbered 1, 2, \ldots, N. For each i (1 \leq i \leq N), the height of Stone i is h_i.
There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:
- If the frog is currently on Stone i, jump to one of the following: Stone i + 1, i + 2, \ldots, i + K. Here, a cost of |h_i - h_j| is incurred, where j is the stone to land on.
Find the minimum possible total cost incurred before the frog reaches Stone N.
Constraints
- All values in input are integers.
- 2 \leq N \leq 10^5
- 1 \leq K \leq 100
- 1 \leq h_i \leq 10^4
Input
Input is given from Standard Input in the following format:
N K h_1 h_2 \ldots h_N
Output
Print the minimum possible total cost incurred.
Examples
Input
5 3 10 30 40 50 20
Output
30
Input
3 1 10 20 10
Output
20
Input
2 100 10 10
Output
0
Input
10 4 40 10 20 70 80 10 20 70 80 60
Output
40
inputFormat
input are integers.
- 2 \leq N \leq 10^5
- 1 \leq K \leq 100
- 1 \leq h_i \leq 10^4
Input
Input is given from Standard Input in the following format:
N K h_1 h_2 \ldots h_N
outputFormat
Output
Print the minimum possible total cost incurred.
Examples
Input
5 3 10 30 40 50 20
Output
30
Input
3 1 10 20 10
Output
20
Input
2 100 10 10
Output
0
Input
10 4 40 10 20 70 80 10 20 70 80 60
Output
40
样例
2 100
10 10
0