#D1202. Boring Queries
Boring Queries
Boring Queries
Yura owns a quite ordinary and boring array a of length n. You think there is nothing more boring than that, but Vladik doesn't agree!
In order to make Yura's array even more boring, Vladik makes q boring queries. Each query consists of two integers x and y. Before answering a query, the bounds l and r for this query are calculated: l = (last + x) mod n + 1, r = (last + y) mod n + 1, where last is the answer on the previous query (zero initially), and mod is the remainder operation. Whenever l > r, they are swapped.
After Vladik computes l and r for a query, he is to compute the least common multiple (LCM) on the segment [l; r] of the initial array a modulo 10^9 + 7. LCM of a multiset of integers is the smallest positive integer that is divisible by all the elements of the multiset. The obtained LCM is the answer for this query.
Help Vladik and compute the answer for each query!
Input
The first line contains a single integer n (1 ≤ n ≤ 10^5) — the length of the array.
The second line contains n integers a_i (1 ≤ a_i ≤ 2 ⋅ 10^5) — the elements of the array.
The third line contains a single integer q (1 ≤ q ≤ 10^5) — the number of queries.
The next q lines contain two integers x and y each (1 ≤ x, y ≤ n) — the description of the corresponding query.
Output
Print q integers — the answers for the queries.
Example
Input
3 2 3 5 4 1 3 3 3 2 3 2 3
Output
6 2 15 30
Note
Consider the example:
- boundaries for first query are (0 + 1) mod 3 + 1 = 2 and (0 + 3) mod 3 + 1 = 1. LCM for segment [1, 2] is equal to 6;
- boundaries for second query are (6 + 3) mod 3 + 1 = 1 and (6 + 3) mod 3 + 1 = 1. LCM for segment [1, 1] is equal to 2;
- boundaries for third query are (2 + 2) mod 3 + 1 = 2 and (2 + 3) mod 3 + 1 = 3. LCM for segment [2, 3] is equal to 15;
- boundaries for fourth query are (15 + 2) mod 3 + 1 = 3 and (15 + 3) mod 3 + 1 = 1. LCM for segment [1, 3] is equal to 30.
inputFormat
Input
The first line contains a single integer n (1 ≤ n ≤ 10^5) — the length of the array.
The second line contains n integers a_i (1 ≤ a_i ≤ 2 ⋅ 10^5) — the elements of the array.
The third line contains a single integer q (1 ≤ q ≤ 10^5) — the number of queries.
The next q lines contain two integers x and y each (1 ≤ x, y ≤ n) — the description of the corresponding query.
outputFormat
Output
Print q integers — the answers for the queries.
Example
Input
3 2 3 5 4 1 3 3 3 2 3 2 3
Output
6 2 15 30
Note
Consider the example:
- boundaries for first query are (0 + 1) mod 3 + 1 = 2 and (0 + 3) mod 3 + 1 = 1. LCM for segment [1, 2] is equal to 6;
- boundaries for second query are (6 + 3) mod 3 + 1 = 1 and (6 + 3) mod 3 + 1 = 1. LCM for segment [1, 1] is equal to 2;
- boundaries for third query are (2 + 2) mod 3 + 1 = 2 and (2 + 3) mod 3 + 1 = 3. LCM for segment [2, 3] is equal to 15;
- boundaries for fourth query are (15 + 2) mod 3 + 1 = 3 and (15 + 3) mod 3 + 1 = 1. LCM for segment [1, 3] is equal to 30.
样例
3
2 3 5
4
1 3
3 3
2 3
2 3
6
2
15
30
</p>