#D1157. AND Sequences
AND Sequences
AND Sequences
A sequence of n non-negative integers (n ≥ 2) a_1, a_2, ..., a_n is called good if for all i from 1 to n-1 the following condition holds true: $$$a_1 \: \& \: a_2 \: \& \: ... \: \& \: a_i = a_{i+1} \: \& \: a_{i+2} \: \& \: ... \: \& \: a_n, where \&$$$ denotes the bitwise AND operation.
You are given an array a of size n (n ≥ 2). Find the number of permutations p of numbers ranging from 1 to n, for which the sequence a_{p_1}, a_{p_2}, ... ,a_{p_n} is good. Since this number can be large, output it modulo 10^9+7.
Input
The first line contains a single integer t (1 ≤ t ≤ 10^4), denoting the number of test cases.
The first line of each test case contains a single integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the size of the array.
The second line of each test case contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 10^9) — the elements of the array.
It is guaranteed that the sum of n over all test cases doesn't exceed 2 ⋅ 10^5.
Output
Output t lines, where the i-th line contains the number of good permutations in the i-th test case modulo 10^9 + 7.
Example
Input
4 3 1 1 1 5 1 2 3 4 5 5 0 2 0 3 0 4 1 3 5 1
Output
6 0 36 4
Note
In the first test case, since all the numbers are equal, whatever permutation we take, the sequence is good. There are a total of 6 permutations possible with numbers from 1 to 3: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].
In the second test case, it can be proved that no permutation exists for which the sequence is good.
In the third test case, there are a total of 36 permutations for which the sequence is good. One of them is the permutation [1,5,4,2,3] which results in the sequence s=[0,0,3,2,0]. This is a good sequence because
- s_1 = s_2 : & : s_3 : & : s_4 : & : s_5 = 0,
- s_1 : & : s_2 = s_3 : & : s_4 : & : s_5 = 0,
- s_1 : & : s_2 : & : s_3 = s_4 : & : s_5 = 0,
- s_1 : & : s_2 : & : s_3 : & : s_4 = s_5 = 0.
inputFormat
outputFormat
output it modulo 10^9+7.
Input
The first line contains a single integer t (1 ≤ t ≤ 10^4), denoting the number of test cases.
The first line of each test case contains a single integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the size of the array.
The second line of each test case contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 10^9) — the elements of the array.
It is guaranteed that the sum of n over all test cases doesn't exceed 2 ⋅ 10^5.
Output
Output t lines, where the i-th line contains the number of good permutations in the i-th test case modulo 10^9 + 7.
Example
Input
4 3 1 1 1 5 1 2 3 4 5 5 0 2 0 3 0 4 1 3 5 1
Output
6 0 36 4
Note
In the first test case, since all the numbers are equal, whatever permutation we take, the sequence is good. There are a total of 6 permutations possible with numbers from 1 to 3: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1].
In the second test case, it can be proved that no permutation exists for which the sequence is good.
In the third test case, there are a total of 36 permutations for which the sequence is good. One of them is the permutation [1,5,4,2,3] which results in the sequence s=[0,0,3,2,0]. This is a good sequence because
- s_1 = s_2 : & : s_3 : & : s_4 : & : s_5 = 0,
- s_1 : & : s_2 = s_3 : & : s_4 : & : s_5 = 0,
- s_1 : & : s_2 : & : s_3 = s_4 : & : s_5 = 0,
- s_1 : & : s_2 : & : s_3 : & : s_4 = s_5 = 0.
样例
4
3
1 1 1
5
1 2 3 4 5
5
0 2 0 3 0
4
1 3 5 1
6
0
36
4
</p>