#D11408. RNG and XOR

    ID: 9490 Type: Default 3000ms 1073MiB

RNG and XOR

RNG and XOR

Snuke found a random number generator. It generates an integer between 0 and 2^N-1 (inclusive). An integer sequence A_0, A_1, \cdots, A_{2^N-1} represents the probability that each of these integers is generated. The integer i (0 \leq i \leq 2^N-1) is generated with probability A_i / S, where S = \sum_{i=0}^{2^N-1} A_i. The process of generating an integer is done independently each time the generator is executed.

Snuke has an integer X, which is now 0. He can perform the following operation any number of times:

  • Generate an integer v with the generator and replace X with X \oplus v, where \oplus denotes the bitwise XOR.

For each integer i (0 \leq i \leq 2^N-1), find the expected number of operations until X becomes i, and print it modulo 998244353. More formally, represent the expected number of operations as an irreducible fraction P/Q. Then, there exists a unique integer R such that R \times Q \equiv P \mod 998244353,\ 0 \leq R < 998244353, so print this R.

We can prove that, for every i, the expected number of operations until X becomes i is a finite rational number, and its integer representation modulo 998244353 can be defined.

Constraints

  • 1 \leq N \leq 18
  • 1 \leq A_i \leq 1000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N A_0 A_1 \cdots A_{2^N-1}

Output

Print 2^N lines. The (i+1)-th line (0 \leq i \leq 2^N-1) should contain the expected number of operations until X becomes i, modulo 998244353.

Examples

Input

2 1 1 1 1

Output

0 4 4 4

Input

2 1 2 1 2

Output

0 499122180 4 499122180

Input

4 337 780 799 10 796 875 331 223 941 67 148 483 390 565 116 355

Output

0 468683018 635850749 96019779 657074071 24757563 745107950 665159588 551278361 143136064 557841197 185790407 988018173 247117461 129098626 789682908

inputFormat

input are integers.

Input

Input is given from Standard Input in the following format:

N A_0 A_1 \cdots A_{2^N-1}

outputFormat

Output

Print 2^N lines. The (i+1)-th line (0 \leq i \leq 2^N-1) should contain the expected number of operations until X becomes i, modulo 998244353.

Examples

Input

2 1 1 1 1

Output

0 4 4 4

Input

2 1 2 1 2

Output

0 499122180 4 499122180

Input

4 337 780 799 10 796 875 331 223 941 67 148 483 390 565 116 355

Output

0 468683018 635850749 96019779 657074071 24757563 745107950 665159588 551278361 143136064 557841197 185790407 988018173 247117461 129098626 789682908

样例

4
337 780 799 10 796 875 331 223 941 67 148 483 390 565 116 355
0

468683018 635850749 96019779 657074071 24757563 745107950 665159588 551278361 143136064 557841197 185790407 988018173 247117461 129098626 789682908

</p>