#D11255. Matching
Matching
Matching
There are N men and N women, both numbered 1, 2, \ldots, N.
For each i, j (1 \leq i, j \leq N), the compatibility of Man i and Woman j is given as an integer a_{i, j}. If a_{i, j} = 1, Man i and Woman j are compatible; if a_{i, j} = 0, they are not.
Taro is trying to make N pairs, each consisting of a man and a woman who are compatible. Here, each man and each woman must belong to exactly one pair.
Find the number of ways in which Taro can make N pairs, modulo 10^9 + 7.
Constraints
- All values in input are integers.
- 1 \leq N \leq 21
- a_{i, j} is 0 or 1.
Input
Input is given from Standard Input in the following format:
N a_{1, 1} \ldots a_{1, N} : a_{N, 1} \ldots a_{N, N}
Output
Print the number of ways in which Taro can make N pairs, modulo 10^9 + 7.
Examples
Input
3 0 1 1 1 0 1 1 1 1
Output
3
Input
4 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
Output
1
Input
1 0
Output
0
Input
21 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0
Output
102515160
inputFormat
input are integers.
- 1 \leq N \leq 21
- a_{i, j} is 0 or 1.
Input
Input is given from Standard Input in the following format:
N a_{1, 1} \ldots a_{1, N} : a_{N, 1} \ldots a_{N, N}
outputFormat
Output
Print the number of ways in which Taro can make N pairs, modulo 10^9 + 7.
Examples
Input
3 0 1 1 1 0 1 1 1 1
Output
3
Input
4 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
Output
1
Input
1 0
Output
0
Input
21 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0
Output
102515160
样例
1
0
0