#D11022. Berserk And Fireball
Berserk And Fireball
Berserk And Fireball
There are n warriors in a row. The power of the i-th warrior is a_i. All powers are pairwise distinct.
You have two types of spells which you may cast:
- Fireball: you spend x mana and destroy exactly k consecutive warriors;
- Berserk: you spend y mana, choose two consecutive warriors, and the warrior with greater power destroys the warrior with smaller power.
For example, let the powers of warriors be [2, 3, 7, 8, 11, 5, 4], and k = 3. If you cast Berserk on warriors with powers 8 and 11, the resulting sequence of powers becomes [2, 3, 7, 11, 5, 4]. Then, for example, if you cast Fireball on consecutive warriors with powers [7, 11, 5], the resulting sequence of powers becomes [2, 3, 4].
You want to turn the current sequence of warriors powers a_1, a_2, ..., a_n into b_1, b_2, ..., b_m. Calculate the minimum amount of mana you need to spend on it.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the length of sequence a and the length of sequence b respectively.
The second line contains three integers x, k, y (1 ≤ x, y, ≤ 10^9; 1 ≤ k ≤ n) — the cost of fireball, the range of fireball and the cost of berserk respectively.
The third line contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ n). It is guaranteed that all integers a_i are pairwise distinct.
The fourth line contains m integers b_1, b_2, ..., b_m (1 ≤ b_i ≤ n). It is guaranteed that all integers b_i are pairwise distinct.
Output
Print the minimum amount of mana for turning the sequnce a_1, a_2, ..., a_n into b_1, b_2, ..., b_m, or -1 if it is impossible.
Examples
Input
5 2 5 2 3 3 1 4 5 2 3 5
Output
8
Input
4 4 5 1 4 4 3 1 2 2 4 3 1
Output
-1
Input
4 4 2 1 11 1 3 2 4 1 3 2 4
Output
0
inputFormat
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the length of sequence a and the length of sequence b respectively.
The second line contains three integers x, k, y (1 ≤ x, y, ≤ 10^9; 1 ≤ k ≤ n) — the cost of fireball, the range of fireball and the cost of berserk respectively.
The third line contains n integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ n). It is guaranteed that all integers a_i are pairwise distinct.
The fourth line contains m integers b_1, b_2, ..., b_m (1 ≤ b_i ≤ n). It is guaranteed that all integers b_i are pairwise distinct.
outputFormat
Output
Print the minimum amount of mana for turning the sequnce a_1, a_2, ..., a_n into b_1, b_2, ..., b_m, or -1 if it is impossible.
Examples
Input
5 2 5 2 3 3 1 4 5 2 3 5
Output
8
Input
4 4 5 1 4 4 3 1 2 2 4 3 1
Output
-1
Input
4 4 2 1 11 1 3 2 4 1 3 2 4
Output
0
样例
5 2
5 2 3
3 1 4 5 2
3 5
8
</p>