#D10991. Makes And The Product

    ID: 9139 Type: Default 2000ms 256MiB

Makes And The Product

Makes And The Product

After returning from the army Makes received a gift — an array a consisting of n positive integer numbers. He hadn't been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (i, j, k) (i < j < k), such that ai·aj·ak is minimum possible, are there in the array? Help him with it!

Input

The first line of input contains a positive integer number n (3 ≤ n ≤ 105) — the number of elements in array a. The second line contains n positive integer numbers ai (1 ≤ ai ≤ 109) — the elements of a given array.

Output

Print one number — the quantity of triples (i, j, k) such that i, j and k are pairwise distinct and ai·aj·ak is minimum possible.

Examples

Input

4 1 1 1 1

Output

4

Input

5 1 3 2 3 4

Output

2

Input

6 1 3 3 1 3 2

Output

1

Note

In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4.

In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2.

In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices.

inputFormat

Input

The first line of input contains a positive integer number n (3 ≤ n ≤ 105) — the number of elements in array a. The second line contains n positive integer numbers ai (1 ≤ ai ≤ 109) — the elements of a given array.

outputFormat

Output

Print one number — the quantity of triples (i, j, k) such that i, j and k are pairwise distinct and ai·aj·ak is minimum possible.

Examples

Input

4 1 1 1 1

Output

4

Input

5 1 3 2 3 4

Output

2

Input

6 1 3 3 1 3 2

Output

1

Note

In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4.

In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2.

In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices.

样例

5
1 3 2 3 4
2

</p>