#D10791. City Day
City Day
City Day
For years, the Day of city N was held in the most rainy day of summer. New mayor decided to break this tradition and select a not-so-rainy day for the celebration. The mayor knows the weather forecast for the n days of summer. On the i-th day, a_i millimeters of rain will fall. All values a_i are distinct.
The mayor knows that citizens will watch the weather x days before the celebration and y days after. Because of that, he says that a day d is not-so-rainy if a_d is smaller than rain amounts at each of x days before day d and and each of y days after day d. In other words, a_d < a_j should hold for all d - x ≤ j < d and d < j ≤ d + y. Citizens only watch the weather during summer, so we only consider such j that 1 ≤ j ≤ n.
Help mayor find the earliest not-so-rainy day of summer.
Input
The first line contains three integers n, x and y (1 ≤ n ≤ 100 000, 0 ≤ x, y ≤ 7) — the number of days in summer, the number of days citizens watch the weather before the celebration and the number of days they do that after.
The second line contains n distinct integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i denotes the rain amount on the i-th day.
Output
Print a single integer — the index of the earliest not-so-rainy day of summer. We can show that the answer always exists.
Examples
Input
10 2 2 10 9 6 7 8 3 2 1 4 5
Output
3
Input
10 2 3 10 9 6 7 8 3 2 1 4 5
Output
8
Input
5 5 5 100000 10000 1000 100 10
Output
5
Note
In the first example days 3 and 8 are not-so-rainy. The 3-rd day is earlier.
In the second example day 3 is not not-so-rainy, because 3 + y = 6 and a_3 > a_6. Thus, day 8 is the answer. Note that 8 + y = 11, but we don't consider day 11, because it is not summer.
inputFormat
Input
The first line contains three integers n, x and y (1 ≤ n ≤ 100 000, 0 ≤ x, y ≤ 7) — the number of days in summer, the number of days citizens watch the weather before the celebration and the number of days they do that after.
The second line contains n distinct integers a_1, a_2, ..., a_n (1 ≤ a_i ≤ 10^9), where a_i denotes the rain amount on the i-th day.
outputFormat
Output
Print a single integer — the index of the earliest not-so-rainy day of summer. We can show that the answer always exists.
Examples
Input
10 2 2 10 9 6 7 8 3 2 1 4 5
Output
3
Input
10 2 3 10 9 6 7 8 3 2 1 4 5
Output
8
Input
5 5 5 100000 10000 1000 100 10
Output
5
Note
In the first example days 3 and 8 are not-so-rainy. The 3-rd day is earlier.
In the second example day 3 is not not-so-rainy, because 3 + y = 6 and a_3 > a_6. Thus, day 8 is the answer. Note that 8 + y = 11, but we don't consider day 11, because it is not summer.
样例
5 5 5
100000 10000 1000 100 10
5
</p>