#D10781. Morse Code
Morse Code
Morse Code
In Morse code, an letter of English alphabet is represented as a string of some length from 1 to 4. Moreover, each Morse code representation of an English letter contains only dots and dashes. In this task, we will represent a dot with a "0" and a dash with a "1".
Because there are 2^1+2^2+2^3+2^4 = 30 strings with length 1 to 4 containing only "0" and/or "1", not all of them correspond to one of the 26 English letters. In particular, each string of "0" and/or "1" of length at most 4 translates into a distinct English letter, except the following four strings that do not correspond to any English alphabet: "0011", "0101", "1110", and "1111".
You will work with a string S, which is initially empty. For m times, either a dot or a dash will be appended to S, one at a time. Your task is to find and report, after each of these modifications to string S, the number of non-empty sequences of English letters that are represented with some substring of S in Morse code.
Since the answers can be incredibly tremendous, print them modulo 10^9 + 7.
Input
The first line contains an integer m (1 ≤ m ≤ 3 000) — the number of modifications to S.
Each of the next m lines contains either a "0" (representing a dot) or a "1" (representing a dash), specifying which character should be appended to S.
Output
Print m lines, the i-th of which being the answer after the i-th modification to S.
Examples
Input
3 1 1 1
Output
1 3 7
Input
5 1 0 1 0 1
Output
1 4 10 22 43
Input
9 1 1 0 0 0 1 1 0 1
Output
1 3 10 24 51 109 213 421 833
Note
Let us consider the first sample after all characters have been appended to S, so S is "111".
As you can see, "1", "11", and "111" all correspond to some distinct English letter. In fact, they are translated into a 'T', an 'M', and an 'O', respectively. All non-empty sequences of English letters that are represented with some substring of S in Morse code, therefore, are as follows.
- "T" (translates into "1")
- "M" (translates into "11")
- "O" (translates into "111")
- "TT" (translates into "11")
- "TM" (translates into "111")
- "MT" (translates into "111")
- "TTT" (translates into "111")
Although unnecessary for this task, a conversion table from English alphabets into Morse code can be found here.
inputFormat
Input
The first line contains an integer m (1 ≤ m ≤ 3 000) — the number of modifications to S.
Each of the next m lines contains either a "0" (representing a dot) or a "1" (representing a dash), specifying which character should be appended to S.
outputFormat
Output
Print m lines, the i-th of which being the answer after the i-th modification to S.
Examples
Input
3 1 1 1
Output
1 3 7
Input
5 1 0 1 0 1
Output
1 4 10 22 43
Input
9 1 1 0 0 0 1 1 0 1
Output
1 3 10 24 51 109 213 421 833
Note
Let us consider the first sample after all characters have been appended to S, so S is "111".
As you can see, "1", "11", and "111" all correspond to some distinct English letter. In fact, they are translated into a 'T', an 'M', and an 'O', respectively. All non-empty sequences of English letters that are represented with some substring of S in Morse code, therefore, are as follows.
- "T" (translates into "1")
- "M" (translates into "11")
- "O" (translates into "111")
- "TT" (translates into "11")
- "TM" (translates into "111")
- "MT" (translates into "111")
- "TTT" (translates into "111")
Although unnecessary for this task, a conversion table from English alphabets into Morse code can be found here.
样例
5
1
0
1
0
1
1
4
10
22
43
</p>