#D10566. Shashlik Cooking
Shashlik Cooking
Shashlik Cooking
Long story short, shashlik is Miroslav's favorite food. Shashlik is prepared on several skewers simultaneously. There are two states for each skewer: initial and turned over.
This time Miroslav laid out n skewers parallel to each other, and enumerated them with consecutive integers from 1 to n in order from left to right. For better cooking, he puts them quite close to each other, so when he turns skewer number i, it leads to turning k closest skewers from each side of the skewer i, that is, skewers number i - k, i - k + 1, ..., i - 1, i + 1, ..., i + k - 1, i + k (if they exist).
For example, let n = 6 and k = 1. When Miroslav turns skewer number 3, then skewers with numbers 2, 3, and 4 will come up turned over. If after that he turns skewer number 1, then skewers number 1, 3, and 4 will be turned over, while skewer number 2 will be in the initial position (because it is turned again).
As we said before, the art of cooking requires perfect timing, so Miroslav wants to turn over all n skewers with the minimal possible number of actions. For example, for the above example n = 6 and k = 1, two turnings are sufficient: he can turn over skewers number 2 and 5.
Help Miroslav turn over all n skewers.
Input
The first line contains two integers n and k (1 ≤ n ≤ 1000, 0 ≤ k ≤ 1000) — the number of skewers and the number of skewers from each side that are turned in one step.
Output
The first line should contain integer l — the minimum number of actions needed by Miroslav to turn over all n skewers. After than print l integers from 1 to n denoting the number of the skewer that is to be turned over at the corresponding step.
Examples
Input
7 2
Output
2 1 6
Input
5 1
Output
2 1 4
Note
In the first example the first operation turns over skewers 1, 2 and 3, the second operation turns over skewers 4, 5, 6 and 7.
In the second example it is also correct to turn over skewers 2 and 5, but turning skewers 2 and 4, or 1 and 5 are incorrect solutions because the skewer 3 is in the initial state after these operations.
inputFormat
Input
The first line contains two integers n and k (1 ≤ n ≤ 1000, 0 ≤ k ≤ 1000) — the number of skewers and the number of skewers from each side that are turned in one step.
outputFormat
Output
The first line should contain integer l — the minimum number of actions needed by Miroslav to turn over all n skewers. After than print l integers from 1 to n denoting the number of the skewer that is to be turned over at the corresponding step.
Examples
Input
7 2
Output
2 1 6
Input
5 1
Output
2 1 4
Note
In the first example the first operation turns over skewers 1, 2 and 3, the second operation turns over skewers 4, 5, 6 and 7.
In the second example it is also correct to turn over skewers 2 and 5, but turning skewers 2 and 4, or 1 and 5 are incorrect solutions because the skewer 3 is in the initial state after these operations.
样例
5 1
2
2 5
</p>