#D10541. Coprime
Coprime
Coprime
We have N integers. The i-th number is A_i.
\{A_i\} is said to be pairwise coprime when GCD(A_i,A_j)=1 holds for every pair (i, j) such that 1\leq i < j \leq N.
\{A_i\} is said to be setwise coprime when \{A_i\} is not pairwise coprime but GCD(A_1,\ldots,A_N)=1.
Determine if \{A_i\} is pairwise coprime, setwise coprime, or neither.
Here, GCD(\ldots) denotes greatest common divisor.
Constraints
- 2 \leq N \leq 10^6
- 1 \leq A_i\leq 10^6
Input
Input is given from Standard Input in the following format:
N A_1 \ldots A_N
Output
If \{A_i\} is pairwise coprime, print pairwise coprime
; if \{A_i\} is setwise coprime, print setwise coprime
; if neither, print not coprime
.
Examples
Input
3 3 4 5
Output
pairwise coprime
Input
3 6 10 15
Output
setwise coprime
Input
3 6 10 16
Output
not coprime
inputFormat
Input
Input is given from Standard Input in the following format:
N A_1 \ldots A_N
outputFormat
Output
If \{A_i\} is pairwise coprime, print pairwise coprime
; if \{A_i\} is setwise coprime, print setwise coprime
; if neither, print not coprime
.
Examples
Input
3 3 4 5
Output
pairwise coprime
Input
3 6 10 15
Output
setwise coprime
Input
3 6 10 16
Output
not coprime
样例
3
6 10 16
not coprime