#D10217. Linear Congruential Generator
Linear Congruential Generator
Linear Congruential Generator
You are given a tuple generator f^{(k)} = (f_1^{(k)}, f_2^{(k)}, ..., f_n^{(k)}), where f_i^{(k)} = (a_i ⋅ f_i^{(k - 1)} + b_i) mod p_i and f^{(0)} = (x_1, x_2, ..., x_n). Here x mod y denotes the remainder of x when divided by y. All p_i are primes.
One can see that with fixed sequences x_i, y_i, a_i the tuples f^{(k)} starting from some index will repeat tuples with smaller indices. Calculate the maximum number of different tuples (from all f^{(k)} for k ≥ 0) that can be produced by this generator, if x_i, a_i, b_i are integers in the range [0, p_i - 1] and can be chosen arbitrary. The answer can be large, so print the remainder it gives when divided by 10^9 + 7
Input
The first line contains one integer n (1 ≤ n ≤ 2 ⋅ 10^5) — the number of elements in the tuple.
The second line contains n space separated prime numbers — the modules p_1, p_2, …, p_n (2 ≤ p_i ≤ 2 ⋅ 10^6).
Output
Print one integer — the maximum number of different tuples modulo 10^9 + 7.
Examples
Input
4 2 3 5 7
Output
210
Input
3 5 3 3
Output
30
Note
In the first example we can choose next parameters: a = [1, 1, 1, 1], b = [1, 1, 1, 1], x = [0, 0, 0, 0], then f_i^{(k)} = k mod p_i.
In the second example we can choose next parameters: a = [1, 1, 2], b = [1, 1, 0], x = [0, 0, 1].
inputFormat
Input
The first line contains one integer n (1 ≤ n ≤ 2 ⋅ 10^5) — the number of elements in the tuple.
The second line contains n space separated prime numbers — the modules p_1, p_2, …, p_n (2 ≤ p_i ≤ 2 ⋅ 10^6).
outputFormat
Output
Print one integer — the maximum number of different tuples modulo 10^9 + 7.
Examples
Input
4 2 3 5 7
Output
210
Input
3 5 3 3
Output
30
Note
In the first example we can choose next parameters: a = [1, 1, 1, 1], b = [1, 1, 1, 1], x = [0, 0, 0, 0], then f_i^{(k)} = k mod p_i.
In the second example we can choose next parameters: a = [1, 1, 2], b = [1, 1, 0], x = [0, 0, 1].
样例
4
2 3 5 7
210
</p>