#D10049. Intervals on Tree
Intervals on Tree
Intervals on Tree
We have a tree with N vertices and N-1 edges, respectively numbered 1, 2,\cdots, N and 1, 2, \cdots, N-1. Edge i connects Vertex u_i and v_i.
For integers L, R (1 \leq L \leq R \leq N), let us define a function f(L, R) as follows:
- Let S be the set of the vertices numbered L through R. f(L, R) represents the number of connected components in the subgraph formed only from the vertex set S and the edges whose endpoints both belong to S.
Compute \sum_{L=1}^{N} \sum_{R=L}^{N} f(L, R).
Constraints
- 1 \leq N \leq 2 \times 10^5
- 1 \leq u_i, v_i \leq N
- The given graph is a tree.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1}
Output
Print \sum_{L=1}^{N} \sum_{R=L}^{N} f(L, R).
Examples
Input
3 1 3 2 3
Output
7
Input
2 1 2
Output
3
Input
10 5 3 5 7 8 9 1 9 9 10 8 4 7 4 6 10 7 2
Output
113
inputFormat
input are integers.
Input
Input is given from Standard Input in the following format:
N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1}
outputFormat
Output
Print \sum_{L=1}^{N} \sum_{R=L}^{N} f(L, R).
Examples
Input
3 1 3 2 3
Output
7
Input
2 1 2
Output
3
Input
10 5 3 5 7 8 9 1 9 9 10 8 4 7 4 6 10 7 2
Output
113
样例
2
1 2
3