#C6468. Smallest Contiguous Subarray Sum

    ID: 50231 Type: Default 1000ms 256MiB

Smallest Contiguous Subarray Sum

Smallest Contiguous Subarray Sum

Given an array of integers, your task is to find the smallest sum of any contiguous subarray. Formally, if the array is represented as (a_1, a_2, \ldots, a_n), you need to compute: [ min_{1 \leq i \leq j \leq n} \left( \sum_{k=i}^{j} a_k \right) ] For instance, if the input is [3, -4, 2, -8, 5, -1], the smallest contiguous subarray sum is -10.

Note: The subarray must contain at least one element.

inputFormat

The first line contains an integer (n), representing the number of elements in the array. The second line contains (n) space-separated integers denoting the array elements.

outputFormat

Output a single integer: the smallest sum of any contiguous subarray.## sample

6
3 -4 2 -8 5 -1
-10