#C5856. Taco Array Construction
Taco Array Construction
Taco Array Construction
Given an integer \( n \), determine if it is possible to construct an array \( A \) of length \( n \) such that each element \( A[i] \) (for \( 1 \leq i \leq n \)) is an integer in the range \([1, n]\) and the sum of the array equals its product, i.e., \( \sum_{i=1}^{n}A[i] = \prod_{i=1}^{n}A[i] \). If there exists such an array, output one valid example; otherwise, output -1.
For this problem, valid outputs are predefined for specific values of \( n \):
- When \( n = 1 \): output
1
- When \( n = 3 \): output
1 2 1
- When \( n = 5 \): output
1 2 3 6 3
For all other values of \( n \), output -1.
inputFormat
The first line contains a single integer \( T \) representing the number of test cases.
Each of the following \( T \) lines contains a single integer \( n \).
Input Format:
T n1 n2 ... nT
outputFormat
For each test case, output the resulting array or -1 if no valid array exists. For a valid array, print the numbers separated by spaces on a single line.
Output Format:
result1 result2 ... resultT## sample
3
1
3
5
1
1 2 1
1 2 3 6 3
</p>